Show simple item record

dc.contributor.authorPérez Valencia, Diana M.
dc.contributor.authorRodriguez Alvarez, Maria Jose 
dc.contributor.authorBoer, Martin P.
dc.contributor.authorKronenberg, Lukas
dc.contributor.authorHund, Andreas
dc.contributor.authorCabrera Bosquet, Llorenç
dc.contributor.authorMillet, Emilie J.
dc.contributor.authorEeuwijk, Fred A. van
dc.date.accessioned2023-03-01T08:06:12Z
dc.date.available2023-03-01T08:06:12Z
dc.date.issued2022-02-24
dc.identifier.citationScientific Reports, 12(1): 3177 (2022)spa
dc.identifier.issn20452322
dc.identifier.urihttp://hdl.handle.net/11093/4518
dc.description.abstractHigh throughput phenotyping (HTP) platforms and devices are increasingly used for the characterization of growth and developmental processes for large sets of plant genotypes. Such HTP data require challenging statistical analyses in which longitudinal genetic signals need to be estimated against a background of spatio-temporal noise processes. We propose a two-stage approach for the analysis of such longitudinal HTP data. In a first stage, we correct for design features and spatial trends per time point. In a second stage, we focus on the longitudinal modelling of the spatially corrected data, thereby taking advantage of shared longitudinal features between genotypes and plants within genotypes. We propose a flexible hierarchical three-level P-spline growth curve model, with plants/plots nested in genotypes, and genotypes nested in populations. For selection of genotypes in a plant breeding context, we show how to extract new phenotypes, like growth rates, from the estimated genotypic growth curves and their first-order derivatives. We illustrate our approach on HTP data from the PhenoArch greenhouse platform at INRAE Montpellier and the outdoor Field Phenotyping platform at ETH Zürich.en
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades | Ref. BCAM Severo Ochoa accreditation SEV-2017-0718spa
dc.description.sponsorshipSchweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung | Ref. project PhenoCOOL (project no. 169542)spa
dc.description.sponsorshipHorizon 2020 Framework Programme | Ref. grant agreement ID 731013 (EPPN2020)spa
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades | Ref. MTM2017-82379-Rspa
dc.language.isoengspa
dc.publisherScientific Reportsspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-82379-R/ES
dc.relationinfo:eu-repo/grantAgreement/MICIU//SEV-2017-0718/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleA two-stage approach for the spatio-temporal analysis of high-throughput phenotyping dataen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/EU/H2020/731013spa
dc.identifier.doi10.1038/s41598-022-06935-9
dc.identifier.editorhttps://www.nature.com/articles/s41598-022-06935-9spa
dc.publisher.departamentoEstatística e investigación operativaspa
dc.publisher.grupoinvestigacionInferencia Estatística, Decisión e Investigación Operativaspa
dc.subject.unesco2417.14 Genética Vegetalspa
dc.subject.unesco1209.03 Análisis de Datosspa
dc.date.updated2023-02-28T13:45:54Z
dc.computerCitationpub_title=Scientific Reports|volume=12|journal_number=1|start_pag=3177|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International