Decay for strain gradient porous elastic waves
DATE:
2023-01-05
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/4598
EDITED VERSION: https://link.springer.com/10.1007/s00033-022-01930-6
DOCUMENT TYPE: article
ABSTRACT
We study the one-dimensional problem for the linear strain gradient porous elasticity. Our aim is to analyze the behavior of the solutions with respect to the time variable when a dissipative structural mechanism is introduced in the system. We consider five different scenarios: hyperviscosity and viscosity for the displacement component and hyperviscoporosity, viscoporosity and weak viscoporosity for the porous component. We only apply one of these mechanisms at a time. We obtain the exponential decay of the solutions in the case of viscosity and a similar result for the viscoporosity. Nevertheless, in the hyperviscosity case (respectively hyperviscoporosity) the decay is slow and it can be controlled at least by t−1/2. Slow decay is also expected for the weak viscoporosity in the generic case, although a particular combination of the constitutive parameters leads to the exponential decay. We want to emphasize the fact that the hyperviscosity (respectively hyperviscoporosity) is a stronger dissipative mechanism than the viscosity (respectively viscoporosity); however, in this situation, the second mechanism seems to be more “efficient” than the first one in order to pull along the solutions rapidly to zero. This is a striking fact that we have not seen previously at any other linear coupling system. Finally, we also present some numerical simulations by using the finite element method and the Newmark-β scheme to show the behavior of the energy decay of the solutions to the above problems, including a comparison between the hyperviscosity and the viscosity cases.