Show simple item record

dc.contributor.authorCandal Ventureira, David 
dc.contributor.authorGonzález Castaño, Francisco Javier 
dc.contributor.authorGil Castiñeira, Felipe Jose 
dc.contributor.authorFondo Ferreiro, Pablo 
dc.date.accessioned2023-03-17T12:27:36Z
dc.date.available2023-03-17T12:27:36Z
dc.date.issued2023-03
dc.identifier.citationSoftware Practice and Experience, 53(3): 579-599 (2023)spa
dc.identifier.issn00380644
dc.identifier.issn1097024X
dc.identifier.urihttp://hdl.handle.net/11093/4620
dc.description.abstractIn this article, we evaluate the first experience of computation offloading from drones to real fifth-generation (5G) operator systems, including commercial and private carrier-grade 5G networks. A follow-me drone service was implemented as a representative testbed of remote video analytics. In this application, an image of a person from a drone camera is processed at the edge, and image tracking displacements are translated into positioning commands that are sent back to the drone, so that the drone keeps the camera focused on the person at all times. The application is characterised to identify the processing and communication contributions to service delay. Then, we evaluate the latency of the application in a real non standalone 5G operator network, a standalone carrier-grade 5G private network, and, to compare these results with previous research, a Wi-Fi wireless local area network. We considered both multi-access edge computing (MEC) and cloud offloading scenarios. Onboard computing was also evaluated to assess the trade-offs with task offloading. The results determine the network configurations that are feasible for the follow-me application use case depending on the mobility of the end user, and to what extent MEC is advantageous over a state-of-the-art cloud service.spa
dc.description.sponsorshipMinisterio de Ciencia e Innovación | Ref. PDC2021‐121335‐C21spa
dc.description.sponsorshipMinisterio de Ciencia e Innovación | Ref. PRE2021‐098290spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2020-116329GB-C21spa
dc.language.isoengspa
dc.publisherSoftware Practice and Experiencespa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-121335-C21/ES/
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116329GB-C21/ES/ARISE1: REDES ULTRADENSAS SIN CELDAS (DECK)
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica, Técnica y de Innovación 2021-2023/PRE2021-098290/ES/
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleIs the edge really necessary for drone computing offloading? An experimental assessment in carrier‐grade 5G operator networksen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1002/spe.3161
dc.identifier.editorhttps://onlinelibrary.wiley.com/doi/10.1002/spe.3161spa
dc.publisher.departamentoEnxeñaría telemáticaspa
dc.publisher.grupoinvestigacionGrupo de Tecnoloxías da Informaciónspa
dc.subject.unesco3325.99 Otrasspa
dc.date.updated2023-03-16T10:26:06Z
dc.computerCitationpub_title=Software Practice and Experience|volume=53|journal_number=3|start_pag=579|end_pag=599spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International