BibliotecaPortal de investigación
es | gl
  • Inicio
  • Contact us
  • Give feedback
  • Help
    • About Investigo
    • Search and Find
    • Submit
    • Intellectual Property
    • Open Access Policy
  • Links
    • Sherpa / Romeo
    • Dulcinea
    • OpenDOAR
    • Dialnet Plus
    • ORCID
    • Creative Commons
    • UNESCO Nomenclature
    • español
    • English
    • Gallegan
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of InvestigoAuthorsTitles Materias Unesco Research GroupsType of ContentsJournal TitlesThis CollectionAuthorsTitlesUNESCO SubjectsResearch GroupsType of ContentsJournal Titles

Depositar

Pasos para depositarSolicitar permiso a una editorialRelated guides

Statistics

View Usage Statistics

Predictors and early warning systems in higher education: a systematic literature review

Liz Domínguez, MartínAutor UVIGO; Caeiro Rodríguez, ManuelAutor UVIGO; Llamas Nistal, MartínAutor UVIGO; Mikic Fonte, Fernando ArielAutor UVIGO
DATE: 2019
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/4628
EDITED VERSION: http://ceur-ws.org/Vol-2415/paper08.pdf
UNESCO SUBJECT: 1209.03 Análisis de Datos ; 1203.04 Inteligencia Artificial
DOCUMENT TYPE: conferenceObject

ABSTRACT

The topic of predictive algorithms is often regarded among the most relevant fields of study within the data analytics discipline. Nowadays, these algorithms are widely used by entrepreneurs and researchers alike, having practical applications in a broad variety of contexts, such as in finance, marketing or healthcare. One of such contexts is the educational field, where the development and implementation of learning technologies led to the birth and popularization of computerbased and blended learning. Consequently, student-related data has become easier to collect. This Research Full Paper presents a literature review on predictive algorithms applied to higher education contexts, with special attention to early warning systems (EWS): tools that are typically used to analyze future risks such as a student failing or dropping a course, and that are able to send alerts to instructors or students themselves before these events can happen. Results of using predictors and EWS in real academic scenarios are also highlighted.
Show full item record

Files in this item

[PDF]
Name:
2019_liz_higher_education.pdf
Size:
464.0Kb
Format:
PDF
View/Open

Share/ send to

MendeleyZoteroRefworks

El Repositorio Institucional de la Universidade de Vigo Investigo se difunde en:

University library
Rúa Leonardo da Vinci, s/n
As Lagoas, Marcosende
36310 Vigo

Location

Information
+34 986 813 821
investigo@uvigo.gal

Accessibility | Legal notice | Data protection
Logo UVigo

INFORMACIÓN
+34 986 812 000
informacion@uvigo.gal

CONTACTO

CAMPUS DO MAR

CAMPUS DE OURENSE
+34 988 387 102
Campus da Auga

CAIXA DE QUEIXAS, SUXESTIÓNS E PARABÉNS

TRANSPARENCIA

CAMPUS DE PONTEVEDRA
+34 986 801 949
Campus CREA

OUTRAS WEBS INSTITUCIONAIS

EMERXENCIAS

CAMPUS DE VIGO
+34 986 812 000
Campus Vigo Tecnolóxico

MURO SOCIAL