BibliotecaPortal de investigación
es | gl
  • Inicio
  • Contact us
  • Give feedback
  • Help
    • About Investigo
    • Search and Find
    • Submit
    • Intellectual Property
    • Open Access Policy
  • Links
    • Sherpa / Romeo
    • Dulcinea
    • OpenDOAR
    • Dialnet Plus
    • ORCID
    • Creative Commons
    • UNESCO Nomenclature
    • español
    • English
    • Gallegan
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of InvestigoAuthorsTitles Materias Unesco Research GroupsType of ContentsJournal TitlesThis CollectionAuthorsTitlesUNESCO SubjectsResearch GroupsType of ContentsJournal Titles

Depositar

Guía de autoarchivo (en construcción)Solicitar permiso a una editorial

Statistics

View Usage Statistics

A numerical approach for Gaussian rational formulas to handle difficult poles

Illán González, Jesús RicardoAutor UVIGO; López Lagomasino, G.
DATE: 2006
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/464
UNESCO SUBJECT: 1202.02 Teoría de la Aproximación
DOCUMENT TYPE: conferenceObject

ABSTRACT

Let f be a meromorphic function in a neighborhood V of the real interval I , such that f z ; f ( z ) = 1g Ω V n I . Let W ( x ) be a weight function with possibly some integrable singularities at the end points of I . The problem of evaluating the integral I W ( f ) = Z I f ( x ) W ( x ) dx; has its own interest in applications. It is a theoretical fact that for a variety of weights W ( x ) , Gaussian quadrature formulas based on rational functions (GRQF) converge geometrically to I W ( f ) . However, the so-called difficult poles, that is, those poles which are close to [ a; b ] , produce numerical instability. W. Gautschi (1999) has de- veloped routines to calculate nodes and coefficients for a GRQF when some poles of f are difficult. The authors and U. Fidalgo (2006) have found a method different from Gautschi’s which has been succesfully applied to compute simultaneous ratio- nal quadrature formulas (SRQF). This paper presents a version of the SRQF approach adapted to GRQF for evaluating I W ( f ) efficiently even when some poles of f should be considered as difficult ones. The procedure consists in the use of smoothing trans- formations of [ a; b ] to move real poles away from I , so that the modified moments of the measure dπ ( x ) = W ( x ) dx can be computed with accuracy. A slight variant of the method improves the numerical estimates when some poles are very difficult. Some numerical tests are shown to be compared with previous results
Show full item record

Files in this item

[PDF]
Name:
canaria.pdf
Size:
240.8Kb
Format:
PDF
View/Open

El Repositorio Institucional de la Universidade de Vigo Investigo se difunde en:

University library
Rúa Leonardo da Vinci, s/n
As Lagoas, Marcosende
36310 Vigo

Location

Information
+34 986 813 821
investigo@uvigo.gal

Accessibility | Legal notice | Data protection
Logo UVigo

INFORMACIÓN
+34 986 812 000
informacion@uvigo.gal

CONTACTO

CAMPUS DO MAR

CAMPUS DE OURENSE
+34 988 387 102
Campus da Auga

CAIXA DE QUEIXAS, SUXESTIÓNS E PARABÉNS

TRANSPARENCIA

CAMPUS DE PONTEVEDRA
+34 986 801 949
Campus CREA

OUTRAS WEBS INSTITUCIONAIS

EMERXENCIAS

CAMPUS DE VIGO
+34 986 812 000
Campus Vigo Tecnolóxico

MURO SOCIAL