Show simple item record

dc.contributor.authorGonzález Nóvoa, José A.
dc.contributor.authorCampanioni, Silvia
dc.contributor.authorBusto, Laura
dc.contributor.authorFariña Rodriguez, José 
dc.contributor.authorRodriguez Andina, Juan Jose 
dc.contributor.authorVila, Dolores
dc.contributor.authorÍñiguez, Andrés
dc.contributor.authorVeiga, César
dc.date.accessioned2023-03-30T07:04:41Z
dc.date.available2023-03-30T07:04:41Z
dc.date.issued2023-02-16
dc.identifier.citationInternational Journal of Environmental Research and Public Health, 20(4): 3455 (2023)spa
dc.identifier.issn16604601
dc.identifier.urihttp://hdl.handle.net/11093/4663
dc.description.abstractIt is of great interest to develop and introduce new techniques to automatically and efficiently analyze the enormous amount of data generated in today’s hospitals, using state-of-the-art artificial intelligence methods. Patients readmitted to the ICU in the same hospital stay have a higher risk of mortality, morbidity, longer length of stay, and increased cost. The methodology proposed to predict ICU readmission could improve the patients’ care. The objective of this work is to explore and evaluate the potential improvement of existing models for predicting early ICU patient readmission by using optimized artificial intelligence algorithms and explainability techniques. In this work, XGBoost is used as a predictor model, combined with Bayesian techniques to optimize it. The results obtained predicted early ICU readmission (AUROC of 0.92 ± 0.03) improves state-of-the-art consulted works (whose AUROC oscillate between 0.66 and 0.78). Moreover, we explain the internal functioning of the model by using Shapley Additive Explanation-based techniques, allowing us to understand the model internal performance and to obtain useful information, as patient-specific information, the thresholds from which a feature begins to be critical for a certain group of patients, and the feature importance ranking.en
dc.description.sponsorshipAgencia Gallega de Innovación | Ref. IN845D-2020/29spa
dc.description.sponsorshipAgencia Gallega de Innovación | Ref. IN607B-2021/18spa
dc.language.isoengspa
dc.publisherInternational Journal of Environmental Research and Public Healthspa
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleImproving intensive care unit early readmission prediction using optimized and explainable machine learningen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/ijerph20043455
dc.identifier.editorhttps://www.mdpi.com/1660-4601/20/4/3455spa
dc.publisher.departamentoTecnoloxía electrónicaspa
dc.publisher.grupoinvestigacionDivisión de Deseño e Microelectrónicaspa
dc.subject.unesco1203.04 Inteligencia Artificialspa
dc.subject.unesco1203.20 Sistemas de Control Medicospa
dc.date.updated2023-03-27T09:57:34Z
dc.computerCitationpub_title=International Journal of Environmental Research and Public Health|volume=20|journal_number=4|start_pag=3455|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International