Show simple item record

dc.contributor.authorCasal Guisande, Manuel 
dc.contributor.authorCerqueiro Pequeño, Jorge 
dc.contributor.authorBouza Rodriguez, Jose Benito 
dc.contributor.authorComesaña Campos, Alberto 
dc.date.accessioned2023-06-07T12:27:05Z
dc.date.available2023-06-07T12:27:05Z
dc.date.issued2023-05-27
dc.identifier.citationMathematics, 11(11): 2469 (2023)spa
dc.identifier.issn22277390
dc.identifier.urihttp://hdl.handle.net/11093/4901
dc.description.abstractThe use of intelligent systems in clinical diagnostics has evolved, integrating statistical learning and knowledge-based representation models. Two recent works propose the identification of risk factors for the diagnosis of obstructive sleep apnea (OSA). The first uses statistical learning to identify indicators associated with different levels of the apnea-hypopnea index (AHI). The second paper combines statistical and symbolic inference approaches to obtain risk indicators (Statistical Risk and Symbolic Risk) for a given AHI level. Based on this, in this paper we propose a new intelligent system that considers different AHI levels and generates risk pairs for each level. A learning-based model generates Statistical Risks based on objective patient data, while a cascade of fuzzy expert systems determines a Symbolic Risk using symptom data from patient interviews. The aggregation of risk pairs at each level involves a fuzzy expert system with automatically generated fuzzy rules using the Wang-Mendel algorithm. This aggregation produces an Apnea Risk indicator for each AHI level, allowing discrimination between OSA and non-OSA cases, along with appropriate recommendations. This approach improves variability, usefulness, and interpretability, increasing the reliability of the system. Initial tests on data from 4400 patients yielded AUC values of 0.74–0.88, demonstrating the potential benefits of the proposed intelligent system architecture.en
dc.description.sponsorshipXunta de Galicia | Ref. ED481A-2020/038spa
dc.language.isoengspa
dc.publisherMathematicsspa
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleIntegration of the Wang & Mendel algorithm into the application of Fuzzy expert systems to intelligent clinical decision support systemsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/math11112469
dc.identifier.editorhttps://www.mdpi.com/2227-7390/11/11/2469spa
dc.publisher.departamentoDeseño na enxeñaríaspa
dc.publisher.grupoinvestigacionGrupo de Enxeñería de Deseño e Fabricación (GEDEFA)spa
dc.publisher.grupoinvestigacionGED (Grupo de Enxeñería e Deseño)spa
dc.subject.unesco1203.20 Sistemas de Control Medicospa
dc.subject.unesco1203.04 Inteligencia Artificialspa
dc.subject.unesco3212 Salud Publicaspa
dc.date.updated2023-06-07T12:24:35Z
dc.computerCitationpub_title=Mathematics|volume=11|journal_number=11|start_pag=2469|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International