Show simple item record

dc.contributor.authorVence Fernandez, Jesús 
dc.contributor.authorPaz Penín, Maria Concepcion 
dc.contributor.authorSuárez Porto, Eduardo 
dc.contributor.authorCabarcos Rey, Adrián 
dc.contributor.authorConcheiro Castiñeira, Miguel 
dc.date.accessioned2023-06-12T08:18:23Z
dc.date.available2023-06-12T08:18:23Z
dc.date.issued2023-06
dc.identifier.citationResults in Engineering, 18, 101166 (2023)spa
dc.identifier.issn25901230
dc.identifier.urihttp://hdl.handle.net/11093/4913
dc.description.abstractThe utilization of the Exhaust Gas Recirculation (EGR) system during atypical engine operating conditions in order to meet future type-approval criteria exposes the internal surfaces of the devices to exhaust gas with elevated concentrations of particulate matter and greater amounts of hydrocarbon species, leading to the formation of dense and wet sludge deposits. To broaden the understanding of this phenomenon and contribute to the development of advanced EGR devices, this study presents an extended Computational Fluid Dynamics (CFD) model that, in addition to simulating the growth of fouling deposits caused by the accumulation of soot particles, also takes into account the condensation of hydrocarbons. Two scenarios with varying hydrocarbon concentrations in the exhaust flow are analysed, and the evolution of the deposit's thickness and density is determined. A sequential validation process is carried out by comparing the numerical results to actual deposit profiles at different stages of the fouling process. Additionally, hyperspectral images of the fouling layer have been acquired and analysed to validate the regions where hydrocarbon condensation is predicted to play a crucial role, enabling the verification of the hydrocarbon condensation phenomenon predicted by the numerical model. The results obtained under the studied conditions indicate that, on average, 77.4% of the analysed area exhibits a low level of relative error, demonstrating that the proposed model and the methodology used serve as a valuable tool for examining the propensity for deposit formation in devices subjected to fouling exacerbated by hydrocarbon condensation.spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PDC2021-121778-100spa
dc.language.isoengspa
dc.publisherResults in Engineeringspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PDC2021-121778-100/ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleAnalysis of the local growth and density evolution of soot deposits generated under hydrocarbon condensation: 3D simulation and detailed experimental validationen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1016/j.rineng.2023.101166
dc.identifier.editorhttps://linkinghub.elsevier.com/retrieve/pii/S2590123023002931spa
dc.publisher.departamentoEnxeñaría mecánica, máquinas e motores térmicos e fluídosspa
dc.publisher.grupoinvestigacionGTE (Grupo de Tecnoloxía Enerxética)spa
dc.subject.unesco3310.01 Equipo Industrialspa
dc.subject.unesco3313.13 Motores de Combustión Interna (General)spa
dc.subject.unesco3313.12 Equipo y Maquinaria Industrialspa
dc.date.updated2023-06-08T13:23:07Z
dc.computerCitationpub_title=Results in Engineering|volume=18|journal_number=|start_pag=101166|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution-NonCommercial-NoDerivatives 4.0 International
    Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International