Show simple item record

dc.contributor.authorSoria Lopez, Anton 
dc.contributor.authorSobrido Pouso, Carlos
dc.contributor.authorMejuto Fernández, Juan Carlos 
dc.contributor.authorAstray Dopazo, Gonzalo 
dc.date.accessioned2023-10-02T10:16:12Z
dc.date.available2023-10-02T10:16:12Z
dc.date.issued2023-09-27
dc.identifier.citationWater, 15(19): 3380 (2023)spa
dc.identifier.issn20734441
dc.identifier.urihttp://hdl.handle.net/11093/5203
dc.description.abstractReservoirs play an important function in human society due to their ability to hold and regulate the flow. This will play a key role in the future decades due to climate change. Therefore, having reliable predictions of the outflow from a reservoir is necessary for early warning systems and adequate water management. In this sense, this study uses three approaches machine learning (ML)-based techniques—Random Forest (RF), Support Vector Machine (SVM) and artificial neural network (ANN)—to predict outflow one day ahead of eight different dams belonging to the Miño-Sil Hydrographic Confederation (Galicia, Spain), using three input variables of the current day. Mostly, the results obtained showed that the suggested models work correctly in predicting reservoir outflow in normal conditions. Among the different ML approaches analyzed, ANN was the most appropriate technique since it was the one that provided the best model in five reservoirs.spa
dc.description.sponsorshipMinisterio de Ciencia e Innovación | Ref. FPU2020/06140spa
dc.language.isoengspa
dc.publisherWaterspa
dc.relationinfo:eu-repo/grantAgreement/AEI//FPU2020/06140/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleAssessment of different machine learning methods for reservoir outflow forecastingen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.3390/w15193380
dc.identifier.editorhttps://www.mdpi.com/2073-4441/15/19/3380spa
dc.publisher.departamentoQuímica analítica e alimentariaspa
dc.publisher.departamentoQuímica Físicaspa
dc.publisher.grupoinvestigacionInvestigacións Agrarias e Alimentariasspa
dc.subject.unesco2307 Química Físicaspa
dc.subject.unesco2508.06 Hidrografíaspa
dc.date.updated2023-10-02T10:14:27Z
dc.computerCitationpub_title=Water|volume=15|journal_number=19|start_pag=3380|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International