Conversational agents for depression screening: a systematic review
DATE:
2023-10
UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/5323
EDITED VERSION: https://linkinghub.elsevier.com/retrieve/pii/S1386505623002903
DOCUMENT TYPE: article
ABSTRACT
Objective: This work explores the advances in conversational agents aimed at the detection of mental health disorders, and specifically the screening of depression. The focus is put on those based on voice interaction, but other approaches are also tackled, such as text-based interaction or embodied avatars.
Methods: PRISMA was selected as the systematic methodology for the analysis of existing literature, which was retrieved from Scopus, PubMed, IEEE Xplore, APA PsycINFO, Cochrane, and Web of Science. Relevant research addresses the detection of depression using conversational agents, and the selection criteria utilized include their effectiveness, usability, personalization, and psychometric properties.
Results: Of the 993 references initially retrieved, 36 were finally included in our work. The analysis of these studies allowed us to identify 30 conversational agents that claim to detect depression, specifically or in combination with other disorders such as anxiety or stress disorders. As a general approach, screening was implemented in the conversational agents taking as a reference standardized or psychometrically validated
clinical tests, which were also utilized as a golden standard for their validation. The implementation of questionnaires such as Patient Health Questionnaire or the Beck Depression Inventory, which are used in 65% of the articles analyzed, stand out.
Conclusions: The usefulness of intelligent conversational agents allows screening to be administered to different types of profiles, such as patients (33% of relevant proposals) and caregivers (11%), although in many cases a target profile is not clearly of (66% of solutions analyzed). This study found 30 standalone conversational agents, but some proposals were explored that combine several approaches for a more enriching data acquisition. The interaction implemented in most relevant conversational agents is textbased, although the evolution is clearly towards voice integration, which in turns enhances their psychometric characteristics, as voice interaction is perceived as more natural and less invasive.