Show simple item record

dc.contributor.authorNovo Lourés, María 
dc.contributor.authorLage, Yeray
dc.contributor.authorPavón Rial, Maria Reyes 
dc.contributor.authorLaza Fidalgo, Rosalía 
dc.contributor.authorRuano Ordás, David Alfonso 
dc.contributor.authorMéndez Reboredo, José Ramón 
dc.date.accessioned2023-12-11T10:04:37Z
dc.date.available2023-12-11T10:04:37Z
dc.date.issued2022-06
dc.identifier.citationInternational Journal of Interactive Multimedia and Artificial Intelligence, 7(4): 214 (2022)spa
dc.identifier.issn19891660
dc.identifier.urihttp://hdl.handle.net/11093/5488
dc.description.abstractThe last several years have seen the emergence of data mining and its transformation into a powerful tool that adds value to business and research. Data mining makes it possible to explore and find unseen connections between variables and facts observed in different domains, helping us to better understand reality. The programming methods and frameworks used to analyse data have evolved over time. Currently, the use of pipelining schemes is the most reliable way of analysing data and due to this, several important companies are currently offering this kind of services. Moreover, several frameworks compatible with different programming languages are available for the development of computational pipelines and many research studies have addressed the optimization of data processing speed. However, as this study shows, the presence of early error detection techniques and developer support mechanisms is very limited in these frameworks. In this context, this study introduces different improvements, such as the design of different types of constraints for the early detection of errors, the creation of functions to facilitate debugging of concrete tasks included in a pipeline, the invalidation of erroneous instances and/or the introduction of the burst-processing scheme. Adding these functionalities, we developed Big Data Pipelining for Java (BDP4J, https://github.com/sing-group/bdp4j), a fully functional new pipelining framework that shows the potential of these features.en
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. TIN2017-84658-C2-1-Rspa
dc.description.sponsorshipXunta de Galicia | Ref. ED481D-2021/024spa
dc.description.sponsorshipXunta de Galicia | Ref. ED431C2018/55-GRCspa
dc.language.isoengspa
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligencespa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84658-C2-1-R/ES/INTEGRACION DE CONOCIMIENTO SEMANTICO PARA EL FILTRADO DE SPAM BASADO EN CONTENIDO
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
dc.titleImproving pipelining tools for pre-processing dataen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.9781/ijimai.2021.10.004
dc.identifier.editorhttps://reunir.unir.net/handle/123456789/13567spa
dc.publisher.departamentoInformáticaspa
dc.publisher.grupoinvestigacionSistemas Informáticos de Nova Xeraciónspa
dc.subject.unesco1203.17 Informáticaspa
dc.date.updated2023-12-04T10:14:41Z
dc.computerCitationpub_title=International Journal of Interactive Multimedia and Artificial Intelligence|volume=7|journal_number=4|start_pag=214|end_pag=spa


Files in this item

[PDF]

    Show simple item record

    Attribution-NonCommercial-NoDerivs 4.0 International
    Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 4.0 International