Show simple item record

dc.contributor.authorGroba Presa, Carlos 
dc.contributor.authorSartal Rodríguez, Antonio
dc.contributor.authorVázquez Vicente, Xosé Henrique 
dc.date.accessioned2024-01-25T13:45:25Z
dc.date.available2024-01-25T13:45:25Z
dc.date.issued2015-04
dc.identifier.citationComputers & Operations Research, 56, 22-32 (2015)spa
dc.identifier.issn03050548
dc.identifier.urihttp://hdl.handle.net/11093/5820
dc.description.abstractThe paper addresses the synergies from combining a heuristic method with a predictive technique to solve the Dynamic Traveling Salesman Problem (DTSP). Particularly, we build a genetic algorithm that feeds on Newton's motion equation to show how route optimization can be improved when targets are constantly moving. Our empirical evidence stems from the recovery of fish aggregating devices (FADs) by tuna vessels. Based on historical real data provided by GPS buoys attached to the FADs, we first estimate their trajectories to feed a genetic algorithm that searches for the best route considering their future locations. Our solution, which we name Genetic Algorithm based on Trajectory Prediction (GATP), shows that the distance traveled is significantly shorter than implementing other commonly used methods.en
dc.description.sponsorshipEuropean Regional Development Fund | Ref. 10SEC300036PRspa
dc.description.sponsorshipMinisterio de Economía y Competitividad | Ref. ECO2013-45706Rspa
dc.language.isoengspa
dc.publisherComputers & Operations Researchspa
dc.relationinfo:eu-repo/grantAgreement/MINECO//ECO2013-45706-R/ES/
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleSolving the dynamic traveling salesman problem using a genetic algorithm with trajectory prediction: an application to fish aggregating devicesen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1016/j.cor.2014.10.012
dc.identifier.editorhttps://linkinghub.elsevier.com/retrieve/pii/S030505481400269Xspa
dc.publisher.departamentoOrganización de empresas e márketingspa
dc.publisher.grupoinvestigacionREDE: Investigación en Economía, Enerxía e Medio Ambientespa
dc.subject.unesco5307 Teoría Económicaspa
dc.date.updated2024-01-23T12:29:44Z
dc.computerCitationpub_title=Computers & Operations Research|volume=56|journal_number=|start_pag=22|end_pag=32spa


Files in this item

[PDF]

    Show simple item record

    Attribution-NonCommercial-NoDerivs 4.0 International
    Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 4.0 International