Show simple item record

dc.contributor.authorBorrajo Diz, Maria Lourdes 
dc.contributor.authorSeara Vieira, Adrián 
dc.contributor.authorLorenzo Iglesias, Eva Maria 
dc.date.accessioned2024-02-09T12:23:52Z
dc.date.available2024-02-09T12:23:52Z
dc.date.issued2015-01
dc.identifier.citationApplied Soft Computing, 26, 463-473 (2015)spa
dc.identifier.issn15684946
dc.identifier.urihttp://hdl.handle.net/11093/6155
dc.description.abstractThis paper presents an innovative solution to model distributed adaptive systems in biomedical environments. We present an original TCBR-HMM (Text Case Based Reasoning-Hidden Markov Model) for biomedical text classification based on document content. The main goal is to propose a more effective classifier than current methods in this environment where the model needs to be adapted to new documents in an iterative learning frame. To demonstrate its achievement, we include a set of experiments, which have been performed on OSHUMED corpus. Our classifier is compared with Naive Bayes and SVM techniques, commonly used in text classification tasks. The results suggest that the TCBR-HMM Model is indeed more suitable for document classification. The model is empirically and statistically comparable to the SVM classifier and outperforms it in terms of time efficiency.en
dc.description.sponsorshipMinisterio de Ciencia e Innovación | Ref. TIN2009-14057-C03-02spa
dc.language.isoengspa
dc.publisherApplied Soft Computingspa
dc.relationinfo:eu-repo/grantAgreement/MICINN//TIN2009-14057-C03-02/ES
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleTCBR-HMM: An HMM-based text classifier with a CBR systemen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1016/j.asoc.2014.10.019
dc.identifier.editorhttps://linkinghub.elsevier.com/retrieve/pii/S1568494614005298spa
dc.publisher.departamentoInformáticaspa
dc.publisher.grupoinvestigacionSistemas Informáticos de Nova Xeraciónspa
dc.subject.unesco1203.17 Informáticaspa
dc.date.updated2024-01-25T14:41:31Z
dc.computerCitationpub_title=Applied Soft Computing|volume=26|journal_number=|start_pag=463|end_pag=473spa
dc.referencesThis is an accepted manuscript of the article published by Elsevier in Applied Soft Computing on Jan. 2015, available at 10.1016/j.asoc.2014.10.019


Files in this item

[PDF]

    Show simple item record

    Attribution-NonCommercial-NoDerivs 4.0 International
    Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 4.0 International