Show simple item record

dc.contributor.authorSeara Vieira, Adrián 
dc.contributor.authorLorenzo Iglesias, Eva Maria 
dc.contributor.authorBorrajo Diz, Maria Lourdes 
dc.date.accessioned2024-02-12T07:43:17Z
dc.date.available2024-02-12T07:43:17Z
dc.date.issued2016-11-01
dc.identifier.citationCurrent Bioinformatics, 11(5): 503-514 (2016)spa
dc.identifier.issn15748936
dc.identifier.urihttp://hdl.handle.net/11093/6194
dc.description.abstractBackground: The performance of the text classification techniques is commonly affected by the characteristics and representation of the document corpora itself. Of all the problems arising from the corpus, there are three major difficulties which the classifiers must deal with: the feature selection issues, the class imbalance problem and the size of the training set. Objective: The objective of this paper is to present a novel based-content text classifier called T-LHMM that is less sensitive to the text representation and the size of the corpus, and more efficient in terms of running time than other classification techniques. Method: In order to demonstrate it, we present a set of experiments performed on well-known biomedical text corpora. We also compare our classifier with k-Nearest Neighbours and Support Vector Machine models. Results and Conclusion: The experimental and statistical results show that the proposed HMM-based text classifier is indeed less sensitive to the class imbalance, the size of the corpus and the vocabulary than the other classifiers. In addition, it is more efficient in terms of running time than k-NN and SVM techniques.en
dc.description.sponsorshipMinisterio de Economía y Competitividad | Ref. TIN2013-47153-C3-3-Rspa
dc.language.isoengspa
dc.publisherCurrent Bioinformaticsspa
dc.relationinfo:eu-repo/grantAgreement/MINECO//TIN2013-47153-C3-3-R/ES
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.titleAn HMM-based text classifier less sensitive to document management problemsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/316265spa
dc.identifier.doi10.2174/1574893611666160617094720
dc.identifier.editorhttp://www.eurekaselect.com/openurl/content.php?genre=article&issn=1574-8936&volume=11&issue=5&spage=503spa
dc.publisher.departamentoInformáticaspa
dc.publisher.grupoinvestigacionSistemas Informáticos de Nova Xeraciónspa
dc.subject.unesco5701.02 Documentación Automatizadaspa
dc.subject.unesco1203.17 Informáticaspa
dc.date.updated2024-01-25T14:52:02Z
dc.computerCitationpub_title=Current Bioinformatics|volume=11|journal_number=5|start_pag=503|end_pag=514spa


Files in this item

[PDF]

    Show simple item record

    Atribución-NoComercial-SinDerivadas 4.0 Internacional
    Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 4.0 Internacional