UNIVERSAL IDENTIFIER: http://hdl.handle.net/11093/6263
UNESCO SUBJECT: 2501 Ciencias de la Atmósfera
DOCUMENT TYPE: doctoralThesis
ABSTRACT
Accurate and reliable climate modeling is crucial for the protection of the environment, people, and properties. The increase in the number of adverse weather events, such as droughts, floods, or heat waves, over the past few years has fostered research into ways to improve the accuracy, robustness, and quality of weather models in order to enable informed decision-making. The most direct way to achieve these improvements is to increase the quality and quantity of data used by climate prediction models. The work developed during this doctoral thesis focuses on using radar systems to support this idea.
Aligned with this goal, a reliable and validated atmospheric refractivity estimation technique has been developed, and it can be deployed on radars from the current meteorological infrastructure without the need for any additional hardware. Since refractivity and its vertical gradient are closely related to atmospheric pressure, air temperature, and relative humidity, they are extremely valuable for high-precision climate modeling.
Moreover, the use of geostatistical interpolation methods to generate two-dimensional refractivity maps from the derived radar estimations has demonstrated itself to be a solid alternative for areas whose natural orography hinders the performance of the system and reduces the spatial resolution of the method. This study, in addition to a new calibration approach based on publicly available reanalysis weather data instead of ground-based weather stations, allows for the smooth integration of radar-based refractivity estimation technology into the existing meteorological infrastructure while minimizing operational costs.
The techniques proposed in this thesis have shown the viability of using the current weather radar network in a more efficient manner, taking advantage of their capacity to generate high-quality atmospheric data that can be used to develop better and more reliable climate prediction models. These methods have been validated using
real radar systems operated by Meteogalicia, IPMA, and the Met Office. A previsión a curto prazo de eventos extremos cun pronto desenvolvemento temporal (coma poden ser os incendios, ou as tormentas fortes) é importante para garantir a protección de vidas e propiedades. Demostrouse que a estima do índice de refracción da troposfera mediante o procesado de sinal radar pode contribuír significativamente na mellora dos métodos de predición a curto prazo empregados hoxe en día. Non obstante, malia a intensa actividade neste tema durante os últimos anos, os métodos plantexados presentan limitacións importantes, especialmente cara a súa implementación nos sistemas radar operativos na actualidade. O principal obxectivo desta tese de doutoramento é contribuír ó desenvolvemento e mellora dos métodos de predición da refractividade troposférica, con especial fincapé na súa implementación nos sistemas radar actuais. La previsión a corto plazo de eventos extremos con un rápido desarrollo temporal (como pueden ser los incendios, o las tormentas fuertes) es importante para asegurar la protección de vidas y propiedades. Se ha demostrado que la estima del índice de refracción de la troposfera mediante el procesado de señal radar puede contribuir significativamente a mejorar los métodos de predicción a corto plazo actualmente utilizados. Sin embargo, a pesar de la intensa actividad en este tema durante los últimos años, los métodos desarrollados presentan limitaciones importantes, especialmente de cara a su implementación en los sistemas radar operativos en la actualidad. El principal objetivo de esta tesis doctoral es contribuir al desarrollo y mejora de los métodos de predicción de la refractividad troposférica, con especial énfasis en su implementación en los sistemas radar actuales.