Show simple item record

dc.contributor.authorRashdi , Rabia 
dc.contributor.authorBalado Frías, Jesús 
dc.contributor.authorMartínez Sánchez, Joaquín 
dc.contributor.authorArias Sánchez, Pedro 
dc.date.accessioned2024-02-16T09:01:44Z
dc.date.available2024-02-16T09:01:44Z
dc.date.issued2023-05-25
dc.identifier.issn21949034
dc.identifier.urihttp://hdl.handle.net/11093/6278
dc.description.abstractRecently, the rapid development of new laser technologies has led to the continuous evolution of mobile laser systems, resulting in even greater capabilities for transport infrastructure. However, the market offers numerous MLS systems with varying specifications for global navigation satellite systems (GNSS), inertial measurement units (IMU), and laser scanners, which can result in different accuracies, resolutions, and densities. In this regard, this paper aims to compare two different MLS system, integrated with different GNSS and IMU for mapping in road and urban environments. The study evaluates the performance of these sensors using different classifiers and neighborhood sizes to determine which sensor produces better results. Random forest was found to be the most suitable classifier with an overall accuracy of (91.81% for Optech and 94.38% for Riegl) in road environment and (86.39% for Optech and 84.21% for Riegl) in urban environment. In terms of MLS, Optech achieved the highest accuracy in the road environment, while Riegl obtained the highest accuracy in the urban environment. This study provides valuable insights into the most effective MLS systems and approaches for accurate mapping in road and urban infrastructure.en
dc.description.sponsorshipXunta de Galicia | Ref. ED481B-2019-061spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2019-108816RB-I00spa
dc.language.isoengspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108816RB-I00/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleComparative study of road and urban object classification based on mobile laser scannersen
dc.typeconferenceObjectspa
dc.rights.accessRightsopenAccessspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/EU/H2020/860370spa
dc.identifier.doi10.5194/isprs-archives-XLVIII-1-W1-2023-423-2023
dc.identifier.editorhttps://isprs-archives.copernicus.org/articles/XLVIII-1-W1-2023/423/2023/spa
dc.publisher.departamentoEnxeñaría dos recursos naturais e medio ambientespa
dc.conferenceObject.typeComunicación extensa internacionalspa
dc.identifier.conferenceObject12th International Symposium on Mobile Mapping Technology (MMT 2023), Padua, Italia, 24-26 mayo 2023spa
dc.identifier.conferencehttps://www.cirgeo.unipd.it/mmt/spa
dc.publisher.grupoinvestigacionXeotecnoloxías Aplicadasspa
dc.subject.unesco3311.02 Ingeniería de Controlspa
dc.date.updated2024-02-16T08:57:18Z
dc.computerCitationpub_title=COMPARATIVE STUDY OF ROAD AND URBAN OBJECT CLASSIFICATION BASED ON MOBILE LASER SCANNERS|volume=undefined|journal_number=|start_pag=423|end_pag=429|congress_title=12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy|start_date=24/5/2023|end_date=26/5/2023spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International