Show simple item record

dc.contributor.authorGiménez Marqués, Mónica
dc.contributor.authorBellido, Elena
dc.contributor.authorBerthelot, Thomas
dc.contributor.authorSimón Yarza, Teresa
dc.contributor.authorHidalgo, Tania
dc.contributor.authorSimón Vázquez, Rosana 
dc.contributor.authorGonzález Fernández, Maria Africa 
dc.contributor.authorÁvila, José
dc.contributor.authorAsensio, María Carmen
dc.contributor.authorGref, Ruxandra
dc.contributor.authorCouvreur, Patrick
dc.contributor.authorSerre, Christian
dc.contributor.authorHorcajada, Patricia
dc.date.accessioned2024-02-23T13:32:33Z
dc.date.available2024-02-23T13:32:33Z
dc.date.issued2018-10-04
dc.identifier.citationSmall, 14(40): 1-11 (2018)spa
dc.identifier.issn16136810
dc.identifier.issn16136829
dc.identifier.urihttp://hdl.handle.net/11093/6344
dc.description.abstractControlling the outer surface of nanometric metal–organic frameworks (nanoMOFs) and further understanding the in vivo effect of the coated material are crucial for the convenient biomedical applications of MOFs. However, in most studies, the surface modification protocol is often associated with significant toxicity and/or lack of selectivity. As an alternative, how the highly selective and general grafting GraftFast method leads, through a green and simple process, to the successful attachment of multifunctional biopolymers (polyethylene glycol (PEG) and hyaluronic acid) on the external surface of nanoMOFs is reported. In particular, effectively PEGylated iron trimesate MIL-100(Fe) nanoparticles (NPs) exhibit suitable grafting stability and superior chemical and colloidal stability in different biofluids, while conserving full porosity and allowing the adsorption of bioactive molecules (cosmetic and antitumor agents). Furthermore, the nature of the MOF–PEG interaction is deeply investigated using high-resolution soft X-ray spectroscopy. Finally, a cell penetration study using the radio-labeled antitumor agent gemcitabine monophosphate (3H-GMP)-loaded MIL-100(Fe)@PEG NPs shows reduced macrophage phagocytosis, confirming a significant in vitro PEG furtiveness.spa
dc.description.sponsorshipAgence Nationale de la Recherche | Ref. ANR‐10‐LABX‐0035spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. ENE2016-79608-C2-1-Rspa
dc.language.isoengspa
dc.publisherSmallspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2016-79608-C2-1-R/ES/FOTOCONVERSION DE CO2 A COMBUSTIBLES SOLARES UTILIZADO MATERIALES MULTIFUNCIONALES
dc.titleGraftFast surface engineering to improve MOF nanoparticles furtivenesseng
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/658224spa
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/309820spa
dc.identifier.doi10.1002/smll.201801900
dc.identifier.editorhttps://doi.org/10.1002/smll.201801900spa
dc.publisher.departamentoBioquímica, xenética e inmunoloxíaspa
dc.publisher.grupoinvestigacionInmunoloxíaspa
dc.subject.unesco2307 Química Físicaspa
dc.subject.unesco2412.07 Inmunoquímicaspa
dc.date.updated2024-01-21T10:43:41Z
dc.computerCitationpub_title=Small|volume=14|journal_number=40|start_pag=1|end_pag=11spa
dc.referencesThis is the peer reviewed version of the following article which has been published in final form at https://doi.org/10.1002/smll.201801900


Files in this item

[PDF]

    Show simple item record