Show simple item record

dc.contributor.authorBigazzi, Francesco
dc.contributor.authorCaddeo, Alessio
dc.contributor.authorCotrone, Aldo L
dc.contributor.authorParedes Galán, Ángel 
dc.date.accessioned2024-03-06T11:18:59Z
dc.date.available2024-03-06T11:18:59Z
dc.date.issued2020-12
dc.identifier.citationJournal of High Energy Physics, 2020(12): 200-1-200-39 (2020)spa
dc.identifier.issn10298479
dc.identifier.urihttp://hdl.handle.net/11093/6401
dc.description.abstractUsing the holographic correspondence as a tool, we study the dynamics of first-order phase transitions in strongly coupled gauge theories at finite temperature. Considering an evolution from the large to the small temperature phase, we compute the nucleation rate of bubbles of true vacuum in the metastable phase. For this purpose, we find the relevant configurations (bounces) interpolating between the vacua and we compute the related effective actions. We start by revisiting the compact Randall-Sundrum model at high temperature. Using holographic renormalization, we compute the derivative term in the effective bounce action, that was missing in the literature. Then, we address the full problem within the top-down Witten-Sakai-Sugimoto model. It displays both a confinement/deconfinement and a chiral symmetry breaking/restoration phase transition which, depending on the model parameters, can happen at different critical temperatures. For the confinement/deconfinement case we perform the numerical analysis of an effective description of the transition and also provide analytic expressions using thick and thin wall approximations. For the chiral symmetry transition, we implement a variational approach that allows us to address the challenging non-linear problem stemming from the Dirac-Born-Infeld action.en
dc.language.isoengspa
dc.publisherJournal of High Energy Physicsspa
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleFate of false vacua in holographic first-order phase transitionsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1007/JHEP12(2020)200
dc.identifier.editorhttp://link.springer.com/10.1007/JHEP12(2020)200spa
dc.publisher.departamentoFísica aplicadaspa
dc.publisher.grupoinvestigacionGRUPO DE ENXEÑARÍA FÍSICA (OF1)spa
dc.subject.unesco2212 Física Teóricaspa
dc.date.updated2024-01-31T19:21:56Z
dc.computerCitationpub_title=Journal of High Energy Physics|volume=2020|journal_number=12|start_pag=200-1|end_pag=200-39spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International