Show simple item record

dc.contributor.authorHomssi, Bassel Al
dc.contributor.authorChan, Chiu C.
dc.contributor.authorWang, Ke
dc.contributor.authorRowe, Wayne
dc.contributor.authorAllen, Ben
dc.contributor.authorMoores, Ben
dc.contributor.authorCsurgai-Horváth, László
dc.contributor.authorPérez Fontán, Fernando 
dc.contributor.authorKandeepan, Sithamparanathan
dc.contributor.authorAl-Hourani, Akram
dc.date.accessioned2024-05-03T11:52:36Z
dc.date.available2024-05-03T11:52:36Z
dc.date.issued2023-06-15
dc.identifier.citationIEEE Transactions on Machine Learning in Communications and Networking, 1: 78-89 (2023)spa
dc.identifier.issn2831316X
dc.identifier.urihttp://hdl.handle.net/11093/6731
dc.description.abstractAs the number of satellite networks increases, the radio spectrum is becoming more congested, prompting the need to explore higher frequencies. However, it is more difficult to operate at higher frequencies due to severe impairments caused by varying atmospheric conditions. Hence, radio channel forecasting is crucial for operators to adjust and maintain the link’s quality. This paper presents a practical approach for Q/V-band modeling for low Earth orbit satellite channels based on tools from machine learning and statistical modeling. The developed Q/V-band LEO satellite channel model is composed of: 1) forecasting method using model-based deep learning, intended for real-time operation of satellite terminals; and 2) statistical channel simulator that generates a time-series path-loss random process, intended for system design and research. Both approaches capitalize on real-measurements obtained from AlphaSat’s Q/V-band transmitter at different geographic latitudes. The results show that model-based deep learning can outperform simple statistical and deep learning methods by at least 50%. Moreover, the model is capable of incorporating varying rain and elevation angle profilesen
dc.description.sponsorshipUnited Kingdom (U.K.)-Australia Space Bridge, | Ref. Grant P4-22spa
dc.description.sponsorshipAgencia Estatal de Investigación | Ref. PID2020-113240RB-I00spa
dc.language.isoengspa
dc.publisherIEEE Transactions on Machine Learning in Communications and Networkingspa
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113240RB-I00/ES
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleDeep learning forecasting and statistical modeling for Q/V-band LEO satellite channelsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1109/TMLCN.2023.3286793
dc.identifier.editorhttps://ieeexplore.ieee.org/document/10153617/spa
dc.publisher.departamentoTeoría do sinal e comunicaciónsspa
dc.publisher.grupoinvestigacionComunicacións Dixitais e Instrumentaciónspa
dc.subject.unesco3325.06 Comunicaciones Por Satélitespa
dc.subject.unesco2202.09 Propagación de Ondas Electromagnéticasspa
dc.subject.unesco1203.04 Inteligencia Artificialspa
dc.date.updated2024-04-05T08:35:24Z
dc.computerCitationpub_title=IEEE Transactions on Machine Learning in Communications and Networking|volume=1|journal_number=|start_pag=78|end_pag=89spa


Files in this item

[PDF]

    Show simple item record

    Attribution 4.0 International
    Except where otherwise noted, this item's license is described as Attribution 4.0 International