Show simple item record

dc.contributor.authorBerriochoa Esnaola, Elias Manuel Maria 
dc.contributor.authorCachafeiro López, María Alicia 
dc.contributor.authorDíaz de Bustamante, Jaime 
dc.contributor.authorMartínez Brey, Eduardo 
dc.date.accessioned2017-05-16T08:18:20Z
dc.date.available2017-05-16T08:18:20Z
dc.date.issued2016
dc.identifier.citationOpen Mathematics, 14(1): 156-166 (2016)spa
dc.identifier.issn23915455
dc.identifier.urihttp://hdl.handle.net/11093/695
dc.description.abstractThis paper is devoted to Hermite interpolation with Chebyshev-Lobatto and Chebyshev-Radau nodal points. The aim of this piece of work is to establish the rate of convergence for some types of smooth functions. Although the rate of convergence is similar to that of Lagrange interpolation, taking into account the asymptotic constants that we obtain, the use of this method is justified and it is very suitable when we dispose of the appropriate information.spa
dc.language.isoengspa
dc.publisherOpen Mathematicsspa
dc.titleA note on the rate of convergence for Chebyshev-Lobatto and Radau systemsspa
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doiDOI 10.1515/math-2016-0015
dc.identifier.editorhttps://www.degruyter.com/view/j/math.2016.14.issue-1/math-2016-0015/math-2016-0015.xmlspa
dc.publisher.departamentoMatemática aplicada Ispa
dc.publisher.grupoinvestigacionTeorías Estándar e Non Estándar de Polinomios Ortogonaisspa
dc.date.updated2017-05-15T11:00:07Z
dc.computerCitationpub_title=Open Mathematics|volume=14|journal_number=1|start_pag=156|end_pag=166spa


Files in this item

[PDF]

    Show simple item record