Show simple item record

dc.contributor.authorPaz Penín, Maria Concepcion 
dc.contributor.authorSuárez Porto, Eduardo 
dc.contributor.authorConde Fontenla, Marcos 
dc.contributor.authorVence Fernández, Jesús 
dc.date.accessioned2024-06-10T10:15:55Z
dc.date.available2024-06-10T10:15:55Z
dc.date.issued2019-02-13
dc.identifier.citationHeat Transfer Engineering, 41(2): 199-207 (2020)spa
dc.identifier.issn01457632
dc.identifier.issn15210537
dc.identifier.urihttp://hdl.handle.net/11093/6994
dc.description.abstractThis article presents a comprehensive computational model capable of simulating fouling layer thickness evolution using dynamic mesh model. This computational methodology has been developed to reproduce the deposit generation during fouling process with an innovated work method. Dynamic mesh model, from Ansys Fluent software, and external routines have been used to implement this advanced numerical model which allows to move the boundaries of a region relative to other boundaries of the zone. The displacement of the nodes of the mesh is the mechanism that this model uses to adjust the geometry according to the fouling layer evolution. During the simulation process, the geometry under investigation is modified to reproduce the emergence and gradual change of the fouling layer. Different rules of deposition and removal of the fouling process can be implemented in the proposed algorithm. The direct interaction between fouling expressions and governing equations of the main flow is used to predict deposits formation and growth. In this article, numerical simulations of soot fouling layer formation have been presented. Deposit evolution has been calculated inside different heat exchanger technologies used in exhaust gas recirculation systems to analyze fouling process and to verify the advantages of this new computational strategyen
dc.description.sponsorshipMinisterio de Economía y Competitividad | Ref. ENE2014-60046-Rspa
dc.language.isoengspa
dc.publisherHeat Transfer Engineeringspa
dc.relationinfo:eu-repo/grantAgreement/MINECO//ENE2014-60046-R/ES
dc.rightsATTRIBUTION-NONCOMMERCIAL-NODERIVS 4.0 INTERNATIONAL
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleDevelopment of a computational fluid dynamics model for predicting fouling process using dynamic mesh modelen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1080/01457632.2018.1522108
dc.identifier.editorhttps://www.tandfonline.com/doi/full/10.1080/01457632.2018.1522108spa
dc.publisher.departamentoEnxeñaría mecánica, máquinas e motores térmicos e fluídosspa
dc.publisher.grupoinvestigacionGTE (Grupo de Tecnoloxía Enerxética)spa
dc.subject.unesco3313 Tecnología E Ingeniería Mecánicasspa
dc.subject.unesco3317.99 Otrasspa
dc.date.updated2024-04-17T15:25:10Z
dc.computerCitationpub_title=Heat Transfer Engineering|volume=41|journal_number=2|start_pag=199|end_pag=207spa


Files in this item

[PDF]

    Show simple item record

    ATTRIBUTION-NONCOMMERCIAL-NODERIVS 4.0 INTERNATIONAL
    Except where otherwise noted, this item's license is described as ATTRIBUTION-NONCOMMERCIAL-NODERIVS 4.0 INTERNATIONAL