Show simple item record

dc.contributor.authorBerriochoa Esnaola, Elias Manuel Maria 
dc.contributor.authorCachafeiro López, María Alicia 
dc.contributor.authorGarcia Amor, Jose Manuel
dc.date.accessioned2017-05-16T10:55:14Z
dc.date.available2017-05-16T10:55:14Z
dc.date.issued2012
dc.identifier.citationJournal of Applied Mathematics, 2012: 1-11 (2012)spa
dc.identifier.issn16870042
dc.identifier.issn1110757X
dc.identifier.urihttp://hdl.handle.net/11093/699
dc.description.abstractWe study the convergence of the Laurent polynomials of Lagrange interpolation on the unit circle for continuous functions satisfying a condition about their modulus of continuity. The novelty of the result is that now the nodal systems are more general than those constituted by the n roots of complex unimodular numbers and the class of functions is different from the usually studied. Moreover, some consequences for the Lagrange interpolation on [−1,1] and the Lagrange trigonometric interpolation are obtained.spa
dc.language.isoengspa
dc.publisherJournal of Applied Mathematicsspa
dc.titleAbout nodal systems for Lagrange Interpolation on the circlespa
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1155/2012/421340
dc.identifier.editorhttps://www.hindawi.com/journals/jam/2012/421340/spa
dc.publisher.departamentoMatemática aplicada Ispa
dc.publisher.grupoinvestigacionTeorías Estándar e Non Estándar de Polinomios Ortogonaisspa
dc.date.updated2017-05-15T11:38:23Z
dc.computerCitationpub_title=Journal of Applied Mathematics|volume=2012|journal_number=|start_pag=1|end_pag=11spa


Files in this item

[PDF]

    Show simple item record