RT Journal Article T1 Novel single inverter-controlled brushless wound field synchronous machine topology A1 Bukhari, Syed Sabir Hussain A1 Memon, Ali Asghar A1 Madanzadeh, Sadjad A1 Sirewal, Ghulam Jawad A1 Doval Gandoy, Jesús A1 Ro, Jong-Suk K1 3307 Tecnología Electrónica K1 2203 Electrónica K1 1210 Topología AB This paper proposes a novel brushless excitation topology for a three-phase synchronous machine based on a customary current-controlled voltage source inverter (VSI). The inverter employs a simple hysteresis-controller-based current control scheme that enables it to inject a three-phase armature current to the stator winding which contains a dc offset. This dc offset generates an additional air gap magneto-motive force (MMF). On the rotor side, an additional harmonic winding is mounted to harness the harmonic power from the air gap flux. Since a third harmonic flux is generated in this type of topology, the machine structure is also modified to accommodate the third harmonic rotor winding to have a voltage induced as the rotor rotates at synchronous speed. Specifically, four-pole armature and field winding patterns are used, whereas the harmonic winding is configured for a twelve-pole pattern. A diode rectifier is also mounted on the rotor between the harmonic and field windings. Therefore, the generated voltage on the harmonic winding feeds the current to the field winding for excitation. A 2D-finite element analysis (FEA) in JMAG-Designer was carried out for performance evaluation and verification of the topology. The simulation results are consistent with the proposed theory. The topology could reduce the cost and stator winding volume compared to a conventional brushless machine, with good potential for various applications. PB Mathematics SN 22277390 YR 2021 FD 2021-07-23 LK http://hdl.handle.net/11093/2963 UL http://hdl.handle.net/11093/2963 LA eng NO Mathematics, 9(15): 1739 (2021) NO National Research Foundation of Korea | Ref. 2016R1D1A1B01008058 DS Investigo RD 30-sep-2023