RT Journal Article
T1 Symmetries in dynamic models of biological systems: mathematical foundations and implications
A1 Fernandez Villaverde, Alejandro
K1 2404 Biomatemáticas
K1 12 Matemáticas
AB Symmetries are ubiquitous in nature. Almost all organisms have some kind of “symmetry”, meaning that their shape does not change under some geometric transformation. This geometrical concept of symmetry is intuitive and easy to recognize. On the other hand, the behavior of many biological systems over time can be described with ordinary differential equations. These dynamic models may also possess “symmetries”, meaning that the time courses of some variables remain invariant under certain transformations. Unlike the previously mentioned symmetries, the ones present in dynamic models are not geometric, but infinitesimal transformations. These mathematical symmetries can be related to certain features of the system’s dynamic behavior, such as robustness or adaptation capabilities. However, they can also arise from questionable modeling choices, which may lead to non-identifiability and non-observability. This paper provides an overview of the types of symmetries that appear in dynamic models, the mathematical tools available for their analyses, the ways in which they are related to system properties, and the implications for biological modeling.
PB Symmetry
SN 20738994
YR 2022
FD 2022-02-25
LK http://hdl.handle.net/11093/3223
UL http://hdl.handle.net/11093/3223
LA eng
NO Symmetry, 14(3): 467 (2022)
NO MCIN/AEI/10.13039/501100011033 | Ref. PID2020-113992RA-I00
DS Investigo
RD 20-sep-2024