RT Journal Article T1 The Gibbs–Wilbraham phenomenon in the approximation of | x | by using Lagrange interpolation on the Chebyshev–Lobatto nodal systems A1 Berriochoa Esnaola, Elias Manuel Maria A1 Cachafeiro López, María Alicia A1 Garcia Amor, Jose Manuel A1 García Rábade, Héctor K1 1202 Análisis y Análisis Funcional K1 1202.23 Funciones Especiales AB Along this study we find and deeply analyze a new Gibbs phenomenon. As far aswe know, this type of behavior, in different contexts, is connected with functionshaving jump discontinuities. In our case it is related to the behavior of the Lagrangeinterpolation polynomials of the continuous absolute value function. Our study is relatedto the error of the Lagrange polynomial interpolants of the function |x| on [−1, 1]taking as nodal system the m + 2 nodes of the extended Chebyshev polynomial of thesecond kind, obtaining that the error behaves like a function of order O(1/m). A detaileddescription and approximation of the function is presente. PB Journal of Computational and Applied Mathematics SN 03770427 YR 2022 FD 2022-11 LK http://hdl.handle.net/11093/3497 UL http://hdl.handle.net/11093/3497 LA eng NO Journal of Computational and Applied Mathematics, 414, 114403 (2022) NO Financiado para publicación en acceso aberto: Universidade de Vigo/CISUG DS Investigo RD 16-sep-2024