RT Journal Article T1 Early stopping by correlating online indicators in neural networks A1 Vilares Ferro, Manuel A1 Doval Mosquera, Yerai A1 Ribadas Pena, Francisco Jose A1 Darriba Bilbao, Victor Manuel K1 1203.04 Inteligencia Artificial AB In order to minimize the generalization error in neural networks, a novel technique to identifyoverfitting phenomena when training the learner is formally introduced. This enables support of areliable and trustworthy early stopping condition, thus improving the predictive power of that typeof modeling. Our proposal exploits the correlation over time in a collection of online indicators,namely characteristic functions for indicating if a set of hypotheses are met, associated with a range ofindependent stopping conditions built from a canary judgment to evaluate the presence of overfitting.That way, we provide a formal basis for decision making in terms of interrupting the learning process.As opposed to previous approaches focused on a single criterion, we take advantage of subsidiaritiesbetween independent assessments, thus seeking both a wider operating range and greater diagnosticreliability. With a view to illustrating the effectiveness of the halting condition described, we chooseto work in the sphere of natural language processing, an operational continuum increasingly based onmachine learning. As a case study, we focus on parser generation, one of the most demanding andcomplex tasks in the domain. The selection of cross-validation as a canary function enables an actualcomparison with the most representative early stopping conditions based on overfitting identification,pointing to a promising start toward an optimal bias and variance control. PB Neural Networks SN 08936080 YR 2023 FD 2023-02 LK http://hdl.handle.net/11093/4277 UL http://hdl.handle.net/11093/4277 LA eng NO Neural Networks, 159, 109-124 (2023) NO Financiado para publicación en acceso aberto: Universidade de Vigo/CISUG NO info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85160-C2-2-R/ES/AVANCES EN NUEVOS SISTEMAS DE EXTRACCION DE RESPUESTAS CON ANALISIS SEMANTICO Y APRENDIZAJE PROFUNDO NO info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113230RB-C22/ES/SEQUENCE LABELING MULTITASK MODELS FOR LINGUISTICALLY ENRICHED NER: SEMANTICS AND DOMAIN ADAPTATION (SCANNER-UVIGO) NO Agencia Estatal de Investigación | Ref. TIN2017-85160-C2-2-R DS Investigo RD 07-dic-2023