RT Journal Article T1 Baicalin ameliorates insulin resistance and regulates hepatic glucose metabolism via activating insulin signaling pathway in obese pre-diabetic mice A1 Miao, Lingchao A1 Zhang, Xutao A1 Zhang, Haolin A1 Cheong, Meng Sam A1 Chen, Xiaojia A1 Farag, Mohamed A. A1 Cheang, Wai San A1 Xiao , Jianbo K1 3206 Ciencias de la Nutrición AB Background: Diabetes belongs to the most prevalent metabolic diseases worldwide, which is featured with insulin resistance, closely associated with obesity and urgently needs to be treated. Baicalin, belonging to natural flavonoids, has been reported to inhibit oxidative stress or inflammatoin.Purpose: This study investigated the properties of baicalin on modulating abnormal glucolipid metabolism, as well as the underlying in-vitro and in-vivo mechanisms.Methods: Insulin-resistant (IR)-HepG2 cells were stimulated by dexamethasone (20 µM) and high glucose (50 mM) for 48 h and incubated with or without baicalin or metformin for another 16 h. Male C57BL/6 J mice were fed with a high-fat diet (HFD, 60 % kcal% fat) during the total 14 weeks. Obese mice were then administered with baicalin (50 and 100 mg/kg) or vehicle solution everyday through oral gavage during the last 4-week period. Moreover, baicalin metabolisms in vitro and in vivo were determined using UPLC/MS/MS to study itsmetabolism situation.Results: Exposure to dexamethasone and high glucose damaged the abilities of glycogen synthesis and glucose uptake with elevated oxidative stress and increased generation levels of advanced glycation end-products (AGEs) in HepG2 cells. These impairments were basically reversed by baicalin treatment. Four-week oral administration with baicalin ameliorated hyperglycemia and dyslipidemia in HFD-induced obese and pre-diabetic mice. Downregulation of IRS/PI3K/Akt signaling pathway accomplished with reduced GLUT4 expression and enhanced GSK-3β activity was observed in insulin resistant HepG2 cells as well as liver tissues from pre-diabetic mice; and such effect was prevented by baicalin. Moreover, baicalin and its matabolites were detected in IRHepG2 cells and mouse plasma.Conclusion: The study illustrated that baicalin alleviated insulin resistance by activating insulin signaling pathways and inhibiting oxidative stress and AGEs production, revealing the potential of baicalin to be a therapeutic natural flavonoid against hepatic insulin and glucose-lipid metabolic disturbance in pre-diabetes accompanied with obesity. PB Phytomedicine SN 09447113 YR 2024 FD 2024-02 LK http://hdl.handle.net/11093/6347 UL http://hdl.handle.net/11093/6347 LA eng NO Phytomedicine, 124, 155296 (2024) NO Agencia Estatal de Investigación | Ref. RYC2020–030365-I DS Investigo RD 19-sep-2024